
DevelopSense Newsletter Volume 2, Number 1

January 10, 2005
Michael Bolton
mb@developsense.com
http://www.developsense.com
Back issues: http://www.michaelbolton.net/newsletter/index.html
Blog: http://www.developsense.com/blog.html

Welcome!

Please note: I’ve sent this newsletter to you either because you asked me for it explicitly, or
because I genuinely thought that you would be interested in it. If neither is the case, please
accept my apologies and let me know by clicking here, or send a message to
remove@developsense.com.

On the other hand, if you like this newsletter, please take a moment to forward it to friends or
colleagues that you think might be interested. If you’d like to get on the list, please click here,
or send a message to addme@developsense.com.

Your email address is just between you and me. I won't give your email address to anyone else,
nor will I use it for any purpose other than to send you the newsletter and to correspond directly
with you.

Your comments and feedback are very important to me, and I’d love to share them with the rest
of the recipients of the letter. Please send them on to me at feedback@developsense.com.

Teaching Rapid Software Testing in Bangalore
In early October, I took a trip to Bangalore, India, to teach James Bach’s Rapid Software Testing
course1 for Hewlett-Packard. It was a very rewarding experience on all kinds of levels.

First, there was a large dose of culture shock. Unless you’ve been to India, you probably haven’t
seen anything like the traffic in Bangalore. It’s one thing to be in a hurry; it’s another thing to
move nimbly in a crowd, but it’s something entirely different to be violating the laws of physics.
In Bangalore, there seems to be some kind of weird quantum effect that allows two (or more)
vehicles to occupy the same space at the same time without touching each other. All this
happens on roads that are subject to a couple of months a year of constant, heavy rain, and that
weren’t terribly well engineered in the first place. The roads are a big political issue in
Bangalore. Even though the technological infrastructure is impressive, successful companies
need people to be able to get to work. Public transit isn’t up to the task, and even though zillions
of motorcycles and scooters congest the roads, relatively few people can afford them. Many
companies provide buses for their employees, and some commutes are very long indeed.

The culture shock was less profound when we got into the training room. My observation is that
the testers in India were very similar to those in the United States and Canada, both in terms of
their skills and in terms of the challenges they had discovered in the testing task. Like testers

1 See http://www.developsense.com/RapidSoftwareTesting.html

here in North America, they test under uncertain conditions and time constraints. Like testers in
North America, they are under pressure to report quickly and accurately, in a way that will stand
up to scrutiny. Alas, like testers in North America, they’re not often given training in critical
thinking and analytical skills. They often believe that they’re not able—or at least not
empowered—to identify problems other than the ones they’ve been told to look for, and that
make them justifiably nervous. Rapid Testing, both as a course and a practice, is designed to
confront these issues, and the feedback that I received suggests that the course was as successful
in India as it is here at home.

To its great credit, HP India has active and vigourous training program. The testers that I
worked with were exceedingly friendly and thoughtful in class, and we also had very pleasant
and stimulating chats during the breaks. Everyone in India was very kind and hospitable.
Bangalore in particular appears to be on a roll; there was a powerful feeling of optimism, pride,
and possibility in all of the places that I visited. I look forward to the opportunity to visit again.

The AYE Conference 2004
From the 7th of November through the 11th, I attended the Amplifying Your Effectiveness (AYE)
Conference in Phoenix, Arizona. This remarkable conference (which I wrote about in the first
issue of this newsletter) has incalculable value for me and for the other people who attend it.
The focal point of the event is the work of Jerry Weinberg and his colleagues and students.

I was honoured to be a co-presenter for several of the sessions. Three of these I did with James
Bach: Rapid Testing; Testing Teasers; and No Best Practices. The fourth was with Jerry
himself: Using Your Yes/No Medallion.

The Rapid Testing and Testing Teasers sessions were both composed of some lecture and some
exercises from the Rapid Software Testing course. One of the goals of the course is to teach
people to become very good at software testing, so the exercises are designed to be expansive,
and to inspire creative thinking. In most settings, by the end of each exercise, most
participants—including the instructors—have realized a few new possibilities in what to test,
how to test it, and new ways to think about risks. AYE attracts some very astute thinkers, so the
usual tidy flow of ideas became a torrent of white water in the exercises that we led.

I’ve written about my misgivings with respect to “best practices” before, most prominently in the
September 2004 issue of Better Software magazine. The “No Best Practices” session was
particularly valuable for me (and I think for James too), in that we received an epiphany on
exercises in general. As part of the proceedings, we presented a game that James and I invented
and that I’ve done elsewhere on a couple of occasions: Don’t, Because, Instead. The game is
played in pairs, one player proposes a “best practice”; then the other notes a circumstance in
which that practice might be a bad idea, and proposes a different “best practice”. The players
switch roles; the first player rejects the new “best practice” and proposes another; and the game
continues. There are various constraints by which the instructors can alter the flow of the
exchanges, but the basic idea is for the instructors to manipulate the game such that a person who
passionately argues in favour of a practice eventually argues against it.

The theme behind the exercise is to cure the “best practice” disease by identifying contexts in
which a given practice is definitely not best and might even be inadvisable. One of the
participants noted that during the game all of his attention was focused on thinking of a new

practice. He found that the game didn’t give him motivation to consider what was good and
valuable, in an appropriate context, about the practice he was about to attack. We hadn’t intended
the game to be an exercise in which we simply gainsay every practice that gets proposed. The
AYE participants pointed the way to us refining the exercise so that it would be affirmative, not
just negative, which make it a much more powerful thinking exercise.

Jerry Weinberg hired me in advance of the Using Your Yes/No Medallion session to do some
role-playing: I played several bosses, each exhibiting some form of pathological behaviour.

Managers sometimes ask us to do impossible things, and saying No to them is difficult for many
people. Even if the request isn’t impossible to fulfill, it might be more than we’re prepared to
handle, inconvenient, unpleasant, or an impending disaster; there can be plenty of very good
reasons to refuse a request. Yet most of us don’t want to disappoint anyone, least of all a boss or
a hiring manager; some of us like to think of ourselves as accommodating, or super-competent;
some of us are martyrs, and some of us are merely optimistic. Whatever the reason, almost
everyone has had trouble saying No in some circumstance.

The Yes/No Medallion is a reference to Virginia Satir’s Self-Esteem Toolkit. The Medallion is a
talisman representing the ability to say Yes or No (Thank You), and the ability to decide on the
spot which is appropriate for you. Through the session, several (very brave) volunteers stepped
into scenarios, based on their own experiences, that helped to reveal common issues related to
saying No. Jerry then stepped into each role, and demonstrated a more congruent approach in
which the No was sent and received in a way that was clear, emphatic, and as graceful as
possible. As The Boss in each of the scenarios, I found that forcing the Employees into saying
Yes was easy, but I found it impossible to undermine the approaches Jerry used when he played
The Employee. To understand more about the Yes/No Medallion, have a look at Jerry’s books
The Secrets of Consulting and (especially) More Secrets of Consulting.

The real value of the AYE Conference comes from the fact that the sessions are experiential.
That provides to us, as participants, rapid feedback into how we’re absorbing and applying the
material. In most conferences, information is simply transmitted, often without experimentation,
participation, or even discussion to back it up. Everyone at AYE is a participant and may
become a presenter at any moment; as such, we’re all in the centre of the ideas and the centre of
the action. The conference receives my highest recommendation.

Two Interesting Speakers

Thanks to XPToronto, the Toronto eXtreme Programming interest group, I’ve been fortunate to
hear addresses from two industry pundits this fall—Joshua Kerievsky and Scott Ambler.

Joshua is the founder of Industrial Logic, a company that specializes in XP. In his presentation
to XP Toronto, he added at least two terms to my lexicon. I don’t think he originated either
expression, but they’re certainly useful.

First, he spoke of “software debt”—a term coined by Ward Cunningham to describe the cost of
failing to change and update software that definitely needs it. His argument is that the cost of
change isn’t static; it tends to compound the longer you leave legacy systems gathering dust and
cruft. Joshua also used the term “project community” as an all-inclusive handle for the

stakeholders, service providers, and customer representatives associated with a software project.
I’ll be using that term a lot in the future.

At his presentation, Scott Ambler pointed out that a software development project has a lot in
common with producing a stage show. That’s a metaphor that I’ve used in the past. In a
previous career (a long time ago now), I was a theatre stage manager, and indeed there are many
similarities between theatre and software. Perhaps the most important parallel is that every
production is unique. Even though plays like King Lear and A Midsummer Night’s Dream have
been produced thousands of times, each production has its own distinctive character, design,
pace, and performance. Each is created for a different audience, or customer, and each theatre
company is different. In other words, every production has its own context. Finally, good
productions typically choose to innovate, often taking ideas from previous but always bringing a
new life and perspective to the task.

Good theatre critics—analogous to testers in this metaphor—review each production in terms of
its context. Critics must take their own audience—their readers—into account too. It’s
important to note that criticism in the literary and dramatic world isn’t necessarily disparaging or
negative. Good criticism is made better by a knowledge and appreciation of the play, its author,
the author’s literary and historical influences, the theatre company, its audience, its mandate—in
other words, the context of the production. Similarly, good testing is aided by an appreciation of
the context of the product and the project, and the customer. It’s also influenced by the needs
and desires of the person to whom you’re providing the test results. James Bach has pointed out
that, as testers, it’s our job to provide information to management; we think critically about
software. Like theatre critics, we provide a service, investigating things and giving people
information that we believe is important for them to know. Like theatre critics, our reputation
depends upon the quality, relevance, and timeliness of the information that we provide to our
audience. And like theatre critics, if we don’t maintain a good reputation, we’ll be ignored.

Getting Jazzed About Oracles
In traditional testing parlance, an oracle is something that provides a correct answer. W.E.
Howden provides the definition “any (often automated) means that provides information about
the (correct) answer.”2 Some writers in the Mathematical and Factory Schools of software
testing often emphasize that an oracle provides a predicted outcome of a test.

One of my colleagues, Lois, reported to me about a recent testing project in which test scripts
were being assigned to testers. The scripts specified in extensive detail each step that each tester
was to follow. They included specific preconditions, inputs, and predicted output values that the
tester should observe at each step. Testers followed the scripts to the letter—yet when the
product was deployed, hundreds of bug reports came back from the field. What went wrong?

The testers on the project were using too few oracles. Static test scripts aren’t usually very
useful as oracles. One problem is that scripts are derivative, in that, at best, they simply transmit
the result of some other oracle. The bigger problem is that unskilled testers often assume that
scripts have the right answer, and that the answer is the only thing worth caring about. No

2 W. E. Howden. “A Functional Approach to Program Testing and Analysis”. IEEE Transactions on Software
Engineering, 12:997-1005. Quoted in Boris Beizer, Software Testing Techniques, 2nd Edition, Coriolis Group,
Scottsdale AZ, 2003

disagreement between the script and the program?—then there’s no problem with the program.
In this way, the script can help to limit perception, especially in an untrained, brain-turned-off
tester. To use an obvious example, if the program produces a correct result, but turns the display
upside down, there’s a problem regardless of whether the script has anything to say about it.
Almost every tester would remark on the problem: the display should be right-side up. That
expectation is informed by an oracle that suggests display orientation should be consistently
right-side up. Testers sometimes feel less confident in reporting problems that could be more
subtle, but more serious. Part of the problem, perhaps, is a narrow concept of what an oracle is
and how we validate it.

Testing literature sometimes gives, as example of oracles, spreadsheets that perform equivalent
calculations to the program under test, or some part of it; competitive programs, or previous
versions of the same program; tables of data; specifications; reference documents; existing tests;
and so on. Oracles can be as simple as a pocket calculator or as complex as an entire past
version of a program.

These oracles tend to be more or less algorithmic. Algorithmic oracles compute a result
according to some set of steps or formulas. These are relatively explicable and understandable.
In my experience, when people talk about oracles, they usually focus on algorithmic oracles.

James Bach has given me a more expansive definition of “oracle”: “an oracle is a principle or
mechanism by which we determine whether something has a problem.” The traditional
interpretation—oracle as spreadsheet—speaks to oracles as mechanisms, rather than principles.
When we consider oracles as principles, an oracle can be anything that gives an expected result
to which an actual test result can be compared. An oracle need not provide the result of a
calculation; an oracle can be anything that alerts us to trouble. Ideas, not just reference
programs, can be oracles.

As with practically everything that governs testing, oracles are heuristic. As such, oracles are
neither infallible nor complete. They’re provisional, designed or used to aid in answering a
specific question about the product, with the goal that the answer will help to us learn something.
Note that oracles provide “a right answer”, rather than “the right answer”. Oracles have a
context: when they provide a correct answer, that answer is correct according to someone, for
some behaviour under some set of conditions. No oracle will be able to tell you if the entire
program is working perfectly. All oracles are limited to observing some subset of the product.
Moreover, oracles don’t have to be predictive; they can just as easily be retrospective. “Wow—I
didn’t expect that to happen!” is a statement that has an oracle lurking behind it.

A good tester will have dozens of oracles at work simultaneously as she tests, most of them in
her head. As an example, when I click on a button, one oracle suggests to me that the button
should appear to be depressed; another might suggest that, while I’m waiting for the result, an
hourglass should be visible; yet another might suggest some reasonable time for the response—
reasonable within the application’s context. More oracles suggest things about the display of the
result, consistency of behaviour, spelling, and usability issues. In running the test, I could have
observed the right answer according to the script, but if my brain is switched on, I’ll also observe
problems with any of the things above.

Whatever your expectation, an oracle informs it. The tricks are to be conscious of the oracles
that you’re using, to use those oracles to identify problems, to expand continuously your library

of oracles, and to be able to justify the use of those oracles in your context. Diversity and
learning rapidly from experience are important. Good tests inspire more oracles; good oracles
inspire more tests.

In the next newsletter, I’ll write about some attributes that strengthen or weaken your oracles.

What I’ve Been Up To Lately
Through the fall, I worked on an interesting project, testing the foreign exchange component of a
retail application for a major Canadian bank. That project, incidentally, involved generated a
powerful algorithmic oracle, using all kinds of fascinating, new-to-me Excel features. The
spreadsheet, VBA, and array formulas all got a good workout.

I did presentations on testing for XP Toronto (Toronto’s interest group for eXtreme
Programmers) and the Kitchener-Waterloo Software Quality Association.

I also co-hosted a session with my colleague Fiona Charles for TASSQ, the Toronto Association
of System and Software Quality. We presented a workshop that we called Ask TASSQ, in which
attendees at the meeting became clients and consultants to one another. I’ll likely write about it
in a future newsletter.

As noted above, I visited India in October, and I hope to get there again this year.

My partner Mary and I have been continuing to raise a daughter, now seven months old as of this
writing. It’s a lot of work. It’s tougher when Daddy has pneumonia; I did that too, pretty much
all the way through December.

My article on Best Practices (and why I would like to see the term expunged from the lexicon)
was published in Better Software (formerly STQE) Magazine this fall. Right around now, I look
forward to the publication of an article, also in Better Software, detailing the practice and value
of exploratory testing. I’ve also been honoured with an invitation to become the testing
columnist for the magazine, an invitation that I have accepted.

That’s it for now—see you in the next issue.

---Michael B.

